
wheezy.security documentation
Release latest

Andriy Kornatskyy

Apr 17, 2021

Contents

1 Introduction 1

2 Contents 3
2.1 Getting Started . 3
2.2 Examples . 3
2.3 User Guide . 4
2.4 Modules . 7

Python Module Index 11

Index 13

i

ii

CHAPTER 1

Introduction

wheezy.security is a python package written in pure Python code. It is a lightweight security library that provides
integration with:

• pycrypto - The Python Cryptography Toolkit.

• pycryptodome - PyCryptodome is a fork of PyCrypto. It brings several enhancements.

• pycryptodomex - PyCryptodomex is a library independent of the PyCrypto.

• cryptography - cryptography is a package which provides cryptographic recipes and primitives to Python devel-
opers.

It is optimized for performance, well tested and documented.

Resources:

• source code and issues tracker are available on github

• documentation

1

https://www.python.org
https://www.dlitz.net/software/pycrypto/
https://www.pycryptodome.org
https://www.pycryptodome.org
https://pypi.org/project/cryptography/
https://github.com/akornatskyy/wheezy.security
https://github.com/akornatskyy/wheezy.security/issues
https://github.com/akornatskyy/wheezy.security
https://wheezysecurity.readthedocs.io/en/latest/

wheezy.security documentation, Release latest

2 Chapter 1. Introduction

CHAPTER 2

Contents

2.1 Getting Started

2.1.1 Install

wheezy.security requires python version 3.6+. It is independent of operating system. You can install it from pypi site

$ pip install wheezy.security

2.2 Examples

We start with a simple example. Before we proceed let’s setup a virtualenv environment:

$ pip install wheezy.security[pycryptodome]

2.2.1 Protecting Information

Let’s assume we would like to protect some sensitive information, e.g. user id. We can encrypt it, add a hash to prove
validity and finally say that this value is valid for 20 minutes only:

from wheezy.security.crypto import Ticket

ticket = Ticket(max_age=1200, salt='p5sArbHFZvxgeEJFrM9h')

Once you have ticket you can encode any string:

protected_value = ticket.encode('hello')

Decode protected_value this way:

3

http://www.python.org
http://pypi.python.org/pypi/wheezy.security
http://pypi.python.org/pypi/virtualenv

wheezy.security documentation, Release latest

value = ticket.decode(protected_value)

2.2.2 User Principal

Ticket can be used to protect user principal over network (e.g. in http cookie):

from wheezy.security import Principal

principal = Principal(
id='125134788',
roles=['user'],
alias='John Smith')

secure_value = ticket.encode(principal.dump())

Server side now restores this information:

from wheezy.security import ANONYMOUS
from wheezy.security import Principal

principal_dump = ticket.decode(secure_value)
if principal_dump:

principal = Principal.load(principal_dump)
else:

principal = ANONYMOUS

2.3 User Guide

The objective of security is protection of information from theft or corruption, while allowing the information to
remain accessible to its intended users.

2.3.1 Ticket

Ticket is a short packet of bytes generated by a network server for a client, which can be delivered to itself as a means
of authentication or proof of authorization, and cannot easily be forged.

Ticket has the following characteristics:

• It is valid for certain period of time, in particular it has an explicitly set expiration time.

• Its value is signed to prove its authenticity.

• It is encrypted to protect sensitive information.

• It has noise to harden forgery.

Ticket can be instantiated by passing the following arguments:

• max_age - period of time (in seconds) this Ticket is considered valid.

• salt - a random sequence that hardens against ticket forgery. It is prepended to the validation key and the
encryption key.

• digestmod - hash algorithm used with HMAC (Hash-based Message Authentication Code) to sign ticket.
Defaults to SHA1.

• cypher - cryptography algorithm. Defaults to AES128.

4 Chapter 2. Contents

wheezy.security documentation, Release latest

• options - a dictionary that holds the following configuration values: CRYPTO_VALIDATION_KEY (used by
signature) and CRYPTO_ENCRYPTION_KEY (used by encryption).

Validation and Encryption Keys

Keys used for validation and encryption are ensured to be at least of 320 bits length. The ensure_strong_key()
function appends HMAC signature to the key.

If the cryptography library is not available you will see a warning message:

Ticket: cypher not available

Although Ticket continues to function even cryptography library is not installed it strongly recommended to use
cryptography in a production environment.

Thread Safety

Ticket does not alter it state once initialized. It is guaranteed to be thread safe.

Typical Use Case

Here is typical use case when all possible configuration attributes are used:

from wheezy.security.crypto.comp import aes192
from wheezy.security.crypto.comp import sha1
from wheezy.security.crypto import Ticket

options = {
'CRYPTO_VALIDATION_KEY': 'LkLlYR5WbTk54kaIgJOp',
'CRYPTO_ENCRYPTION_KEY': 'rH64daeXBZdgrR7WNawf'

}

ticket = Ticket(
max_age=1200,
salt='CzQnV0KazDKElBYiIC2w',
digestmod=sha1,
cypher=aes192,
options=options)

The ticket instance can be shared application wide. The encode / decode methods are used in the following
way:

protected_value = ticket.encode('hello')

assert 'hello' == ticket.decode(protected_value)

In case the validity of a ticket cannot be confirmed, the decode method returns None.

Extensibility

Ticket cypher can be any callable that satisfies the following contract:

• Initialization is called with encryption key. Returned object must be a factory for the actual algorithm instance.

• Algorithm factory must return new algorithm via simple callable with no arguments.

2.3. User Guide 5

wheezy.security documentation, Release latest

• Algorithm implementation must support two methods: encrypt(value) and decrypt(value).

2.3.2 Principal

Principal is a container of user specific security information. It includes the following attributes:

• id - user identity, e.g. number 755345, UUID f102a87b-ee36-4a2e-97de-8f803f470867 or whatever else is
valid to look up a user quickly in your application.

• roles - a list of authorized user roles, e.g. user, manager, etc.

• alias - a user friendly name, display name, etc. This can be something like John Smith, etc.

• extra - any string you would like to hold in security context.

Here is a sample how to instantiate new Principal:

principal = Principal(
id='125134788',
roles=['user'],
alias='John Smith')

Principal supports the following methods:

• dump - converts instance to a string.

• load - reverse operation to dump.

You can use Ticket to securely pass Principal across network boundaries. Combining them both you can
introduce an authentication/authorization cookie to your application.

2.3.3 Authorization

Authorization specifies access rights to resources and provides access control in particular to your application.

You are able to request authorization by decorating your method with authorized(). Here is a typical use case:

from wheezy.security import authorized

class MyBusinessLogic(object):

principal = None

@authorized
def cancel_transfer(self, id):

return True

@authorized(roles=('operator',))
def approve_transfer(self):

return True

Note that the authorized() decorator requires the object to supply a principal attribute of type Principal.

If a caller is not authorized to perform a requested operation, a SecurityError exception is raised. See
authorized() for more details.

6 Chapter 2. Contents

wheezy.security documentation, Release latest

2.4 Modules

2.4.1 wheezy.security

wheezy.security.authorized(wrapped=None, roles=None)
Demand the user accessing protected resource is authenticated and optionally in one of allowed roles.

Requires wrapped object to provide attribute principal.

roles - a list of authorized roles.

Here is an example:

from wheezy.security.principal import Principal

class Context(object):
principal = None

@authorized
def op_a(self):

return True

@authorized(roles=('operator',))
def op_b(self):

return True

exception wheezy.security.SecurityError(message)
Raised when a security error occurs. It is subclass of RuntimeError.

class wheezy.security.Principal(id=”, roles=(), alias=”, extra=”)
Container of user specific security information

dump()
Dump principal object.

classmethod load(s)
Load principal object from string.

2.4.2 wheezy.security.authorization

authorization module.

wheezy.security.authorization.authorized(wrapped=None, roles=None)
Demand the user accessing protected resource is authenticated and optionally in one of allowed roles.

Requires wrapped object to provide attribute principal.

roles - a list of authorized roles.

Here is an example:

from wheezy.security.principal import Principal

class Context(object):
principal = None

@authorized
def op_a(self):

(continues on next page)

2.4. Modules 7

wheezy.security documentation, Release latest

(continued from previous page)

return True

@authorized(roles=('operator',))
def op_b(self):

return True

2.4.3 wheezy.security.errors

errors module.

exception wheezy.security.errors.SecurityError(message)
Raised when a security error occurs. It is subclass of RuntimeError.

2.4.4 wheezy.security.principal

principal module.

class wheezy.security.principal.Principal(id=”, roles=(), alias=”, extra=”)
Container of user specific security information

dump()
Dump principal object.

classmethod load(s)
Load principal object from string.

2.4.5 wheezy.security.crypto

crypto package.

class wheezy.security.crypto.Ticket(max_age=900, salt=”, digestmod=None, cypher=None,
options=None)

Protects sensitive information (e.g. user id).

Default policy applies verification and encryption. Verification is provided by hmac initialized with sha1
digestmod. Encryption is provided if available, by default it attempts to use AES cypher.

decode(value, encoding=’UTF-8’)
Decode value according to ticket policy.

encode(value, encoding=’UTF-8’)
Encode value according to ticket policy.

sign(value)
Compute hmac digest.

2.4.6 wheezy.security.crypto.ticket

crypto module.

class wheezy.security.crypto.ticket.Ticket(max_age=900, salt=”, digestmod=None,
cypher=None, options=None)

Protects sensitive information (e.g. user id).

8 Chapter 2. Contents

wheezy.security documentation, Release latest

Default policy applies verification and encryption. Verification is provided by hmac initialized with sha1
digestmod. Encryption is provided if available, by default it attempts to use AES cypher.

decode(value, encoding=’UTF-8’)
Decode value according to ticket policy.

encode(value, encoding=’UTF-8’)
Encode value according to ticket policy.

sign(value)
Compute hmac digest.

wheezy.security.crypto.ticket.ensure_strong_key(key, digestmod)
Translates a given key to a computed strong key of length 3 * digestmode.digest_size suitable for encryption,
e.g. with digestmod set to sha1 returns 480 bit (60 bytes) key.

2.4.7 wheezy.security.crypto.padding

padding module.

see http://www.di-mgt.com.au/cryptopad.html

wheezy.security.crypto.padding.pad(s, block_size)
Pad with zeros except make the last byte equal to the number of padding bytes.

The convention with this method is usually always to add a padding string, even if the original plaintext was
already an exact multiple of block_size bytes.

s - byte string.

wheezy.security.crypto.padding.unpad(s, block_size)
Strip right by the last byte number.

s - byte string.

2.4. Modules 9

http://www.di-mgt.com.au/cryptopad.html

wheezy.security documentation, Release latest

10 Chapter 2. Contents

Python Module Index

w
wheezy.security, 7
wheezy.security.authorization, 7
wheezy.security.crypto, 8
wheezy.security.crypto.padding, 9
wheezy.security.crypto.ticket, 8
wheezy.security.errors, 8
wheezy.security.principal, 8

11

wheezy.security documentation, Release latest

12 Python Module Index

Index

A
authorized() (in module wheezy.security), 7
authorized() (in module

wheezy.security.authorization), 7

D
decode() (wheezy.security.crypto.Ticket method), 8
decode() (wheezy.security.crypto.ticket.Ticket

method), 9
dump() (wheezy.security.Principal method), 7
dump() (wheezy.security.principal.Principal method), 8

E
encode() (wheezy.security.crypto.Ticket method), 8
encode() (wheezy.security.crypto.ticket.Ticket

method), 9
ensure_strong_key() (in module

wheezy.security.crypto.ticket), 9

L
load() (wheezy.security.Principal class method), 7
load() (wheezy.security.principal.Principal class

method), 8

P
pad() (in module wheezy.security.crypto.padding), 9
Principal (class in wheezy.security), 7
Principal (class in wheezy.security.principal), 8

S
SecurityError, 7, 8
sign() (wheezy.security.crypto.Ticket method), 8
sign() (wheezy.security.crypto.ticket.Ticket method), 9

T
Ticket (class in wheezy.security.crypto), 8
Ticket (class in wheezy.security.crypto.ticket), 8

U
unpad() (in module wheezy.security.crypto.padding), 9

W
wheezy.security (module), 7
wheezy.security.authorization (module), 7
wheezy.security.crypto (module), 8
wheezy.security.crypto.padding (module), 9
wheezy.security.crypto.ticket (module), 8
wheezy.security.errors (module), 8
wheezy.security.principal (module), 8

13

	Introduction
	Contents
	Getting Started
	Examples
	User Guide
	Modules

	Python Module Index
	Index

